

PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students.

INDEPENDENT PUBLIC SCHOOL

WAEP Semester One Examination, 2019

Question/Answer booklet

MATHEMATICS SPECIALIST UNIT 3 Section Two: Calculator-assumed		SOLUTIONS
Student number:	In figures	
	In words	
	Your name	
Time allowed for this	section	

Reading time before commencing work: Working time: ten minutes one hundred minutes

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer booklet Formula sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, notes on two unfolded sheets of A4 paper, and up to three calculators approved for use in this examination

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	8	8	50	52	35
Section Two: Calculator-assumed	13	13	100	98	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet preferably using a blue/black pen. Do not use erasable or gel pens.
- 3. You must be careful to confine your answer to the specific question asked and to follow any instructions that are specified to a particular question.
- 4. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 5. It is recommended that you do not use pencil, except in diagrams.
- 6. Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

65% (98 Marks)

Section Two: Calculator-assumed

This section has thirteen (13) questions. Answer all questions. Write your answers in the spaces provided.

Working time: 100 minutes.

Question 9

(7 marks)

Determine the values of the real constant a and the real constant b given that z - 4 + 2i is (a) a factor of $z^3 + az + b$.

(4 marks)

Solution
Let $z = 4 - 2i$, then $z^3 = 16 - 88i$
Hence $16 - 88i + 4a - 2ai + b = 0$
Re parts: $16 + 4a + b = 0$
Im parts: $-88 - 2a = 0$
Hence $a = -44, b = 160$
Specific behaviours
✓ identifies root and substitutes
✓ equates real and imaginary parts to zero
\checkmark solves for a
✓ correct values

Clearly show that 2 + i is a root of the equation $z^3 - 7z^2 + 17z - 15 = 0$. (2 marks) (b)

Solution

$$z = 2 + i, 17z = 34 + 17i, 7z^2 = 21 + 28i, z^3 = 2 + 11i$$
 $z^3 - 7z^2 + 17z - 15 = 2 + 11i - 21 - 28i + 34 + 17i - 15$
 $= 36 - 36 + 28i - 28i$
 $= 0$

 Specific behaviours

 ✓ shows expanded term for z^3

 ✓ fully expands all terms and sums to zero

State all three solutions of $z^3 - 7z^2 + 17z - 15 = 0$. (c)

(1 mark)

Solution
z = 3, 2 + i, 2 - i
Specific behaviours
✓ correct solutions

DO NOT WRITE IN THIS AREA AS IT WILL BE CUT OFF

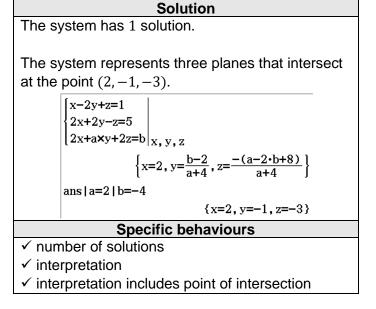
Question 10

Consider the following system of equations, where *a* and *b* are constants.

x - 2y + z = 12x + 2y - z = 52x + ay + 2z = b

For each of the following cases, determine the number of solutions that exist for the system and briefly interpret the system geometrically.

(a)
$$a = 2, b = -4.$$



(b)
$$a = -4, b = -2$$

Solution The system has no solutions. The system represents two parallel planes that are cut by a third non-parallel plane. ans|a=-4|b=-2{x=2, Undefined, Undefined} Specific behaviours ✓ number of solutions ✓ interpretation ✓ interpretation refers to parallel planes

(6 marks)

(3 marks)

(3 marks)

CALCULATOR-ASSUMED

SPECIALIST UNIT 3

Question 11

(6 marks) (1 mark)

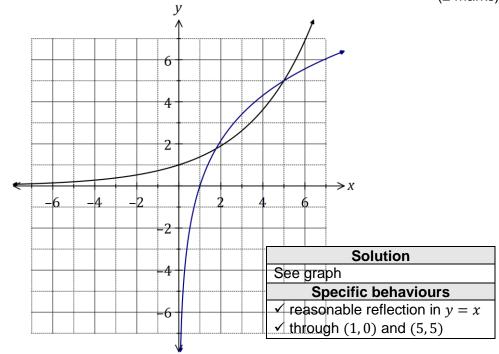
(a) Explain why the function $f(x) = \sin x$, where $x \in \mathbb{R}$, is not one-to-one.

SolutionGraph of f(x) fails horizontal line test, etcSpecific behaviours

5

✓ valid explanation

(b) The graph of y = g(x) is shown below. Sketch the graph of $y = g^{-1}(x)$ on the same axes. (2 marks)



(c) The inverse function of *h* is defined as $h^{-1}(x) = x^2 + 10x + 22$ for $x \le -5$. Determine the defining rule for h(x) and state its domain. (3 marks)

Solution
$x = (y+5)^2 - 3 \Rightarrow y = \pm \sqrt{x+3} - 5$ (CAS)
$D_{h^{-1}} = R_h \Rightarrow y \le -5 \Rightarrow h(x) = -\sqrt{x+3} - 5$
$D_h = \{x \colon x \in \mathbb{R}, x \ge -3\}$
Specific behaviours
✓ using CAS or otherwise obtains two possible functions
\checkmark uses range of h to determine $h(x)$
✓ states that $x \ge -3$

Question 12

Let
$$w = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$
.

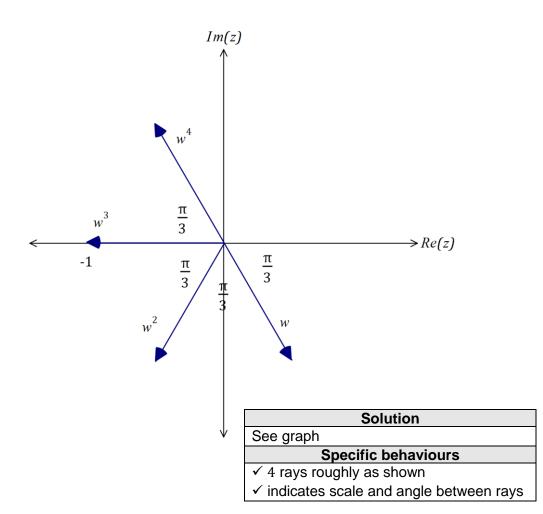
(a) Express w, w^2, w^3 and w^4 in the form $r \operatorname{cis} \theta$, $-\pi < \theta \le \pi$.

Solution

$$w = \operatorname{cis}\left(-\frac{\pi}{3}\right), w^2 = \operatorname{cis}\left(-\frac{2\pi}{3}\right), w^3 = \operatorname{cis}(\pi), w^4 = \operatorname{cis}\left(\frac{2\pi}{3}\right)$$

Specific behaviours
 $\checkmark w \text{ correct}$
 $\checkmark \text{ all correct}$

(b) Sketch w, w^2, w^3 and w^4 as vectors on the Argand diagram below. (2 marks)



(2 marks)

7

SPECIALIST UNIT 3

(c) Describe the transformation in the complex plane of any point z when it is multiplied by w. (2 marks)

Solution	
Rotation about origin of $\frac{\pi}{2}$	
5	
Specific behaviours	
✓ at least one element of transformation	
\checkmark all three elements of transformation	

(d) Simplify

(i) $w + w^2 + w^3 + w^4 + w^5 + w^6$.

Solution
0
Specific behaviours
✓ correct value

(ii) $w^1 + w^2 + w^3 + \dots + w^{2018} + w^{2019}$.

 Solution

 $w + w^2 + w^3 + \dots + w^{2016} = 0$
 $w^{2017} + w^{2018} + w^{2019} = w + w^2 + w^3 = -1 - \sqrt{3}i$

 Specific behaviours

 \checkmark correct sum for $w + \dots + w^{2016}$
 \checkmark correct value

(1 mark)

Question 13

(9 marks)

The position vector of a small body is $\mathbf{r}(t) = (1 + 4\sin(t))\mathbf{i} + (1 - 2\cos(2t))\mathbf{j}$ where *t* is the time in seconds since motion began.

8

(a) Show that the body is stationary when $t = \frac{\pi}{2}$ and state its position at this instant. (3 marks)

Solution
$$\mathbf{v}(t) = 4\cos(t)\mathbf{i} + 4\sin(2t)\mathbf{j}$$
 $\mathbf{v}\left(\frac{\pi}{2}\right) = 4\cos\left(\frac{\pi}{2}\right)\mathbf{i} + 4\sin(\pi)\mathbf{j} = \mathbf{0}$ $\mathbf{r}\left(\frac{\pi}{2}\right) = \left(1 + 4\sin\left(\frac{\pi}{2}\right)\right)\mathbf{i} + (1 - 2\cos(\pi))\mathbf{j} = 5\mathbf{i} + 3\mathbf{j}$ Specific behaviours \checkmark expression for velocity \checkmark substitutes time and obtains zero vector \checkmark states position

(b) Derive the Cartesian equation of the path of the body.

Solution

$$y = 1 - 2\cos(2t) = 1 - 2(1 - 2\sin^{2}(t)) = 4\sin^{2}(t) - 1$$

$$x = 1 + 4\sin(t) \Rightarrow \sin^{2}(t) = \frac{(x - 1)^{2}}{16}$$

$$y = \frac{(x - 1)^{2}}{4} - 1 \text{ where } -3 \le x \le 5$$

$$\underbrace{\text{Specific behaviours}}_{\checkmark \text{ expression for } y \text{ in terms of } \sin^{2}(t)}_{\checkmark \text{ expression for } \sin^{2}(t) \text{ in terms of } x}$$

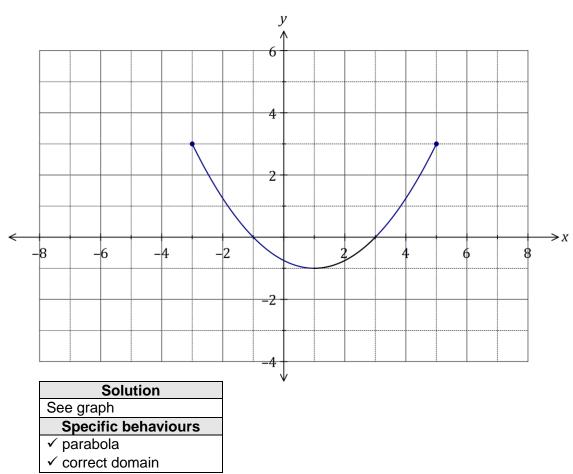
$$\checkmark \text{ Cartesian equation}$$

$$\checkmark \text{ restricts domain or range}$$

(4 marks)

SPECIALIST UNIT 3

(c) Complete the following plot to show the path taken by the body.



SN078-134-4

9

(7 marks)

Question 14

(a) Solve the equation $z^5 - 32i = 0$, writing your solutions in polar form $r \operatorname{cis} \theta$. (4 marks)

Solution $z^{5} = 32i$ $= 2^{5} \operatorname{cis} \frac{\pi}{2}$ $z_{n} = 2 \operatorname{cis} \left(\frac{9\pi}{10} - \frac{4n\pi}{10}\right), n = 0,1,2,3,4$ $z_{0} = 2 \operatorname{cis} \left(\frac{9\pi}{10}\right), z_{1} = 2 \operatorname{cis} \left(\frac{\pi}{2}\right), z_{0} = 2 \operatorname{cis} \left(\frac{\pi}{10}\right), z_{0} = 2 \operatorname{cis} \left(\frac{-3\pi}{10}\right), z_{0} = 2 \operatorname{cis} \left(\frac{-7\pi}{10}\right)$ $\underbrace{\text{Specific behaviours}}$ $\checkmark \text{ expresses in polar form}$ $\checkmark \text{ states general solution}$ $\checkmark \text{ states one correct solution in polar form}$ $\checkmark \text{ states all correct solutions in polar form}$

(b) Use your answers from (a) to show that $\cos\left(\frac{\pi}{10}\right) + \cos\left(\frac{3\pi}{10}\right) + \cos\left(\frac{7\pi}{10}\right) + \cos\left(\frac{9\pi}{10}\right) = 0.$ (3 marks)

Solution
Since
$$z_0 + z_1 + z_2 + z_3 + z_4 = 0$$
 then $\operatorname{Re}(z_0 + z_1 + z_2 + z_3 + z_4) = 0$
 $2\cos\left(\frac{9\pi}{10}\right) + 2\cos\left(\frac{\pi}{2}\right) + 2\cos\left(\frac{\pi}{10}\right) + 2\cos\left(-\frac{3\pi}{10}\right) + 2\cos\left(-\frac{7\pi}{10}\right) = 0$
But $\cos(-\theta) = \cos\theta$ and $\cos\frac{\pi}{2} = 0$
Hence $\cos\left(\frac{\pi}{10}\right) + \cos\left(\frac{3\pi}{10}\right) + \cos\left(\frac{7\pi}{10}\right) + \cos\left(\frac{9\pi}{10}\right) = 0$
Specific behaviours
 \checkmark indicates that sum of roots is zero
 \checkmark equates real part of sum of roots to zero
 \checkmark states $\cos(-\theta) = \cos\theta$ and $\cos\frac{\pi}{2} = 0$ and simplifies

Question 15

(8 marks)

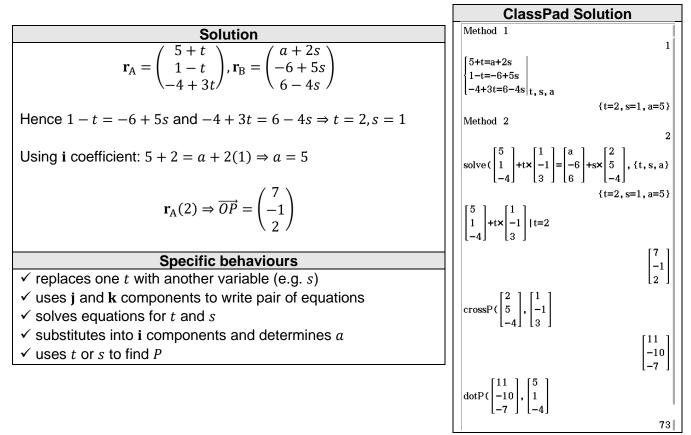
The position vectors of two particles at time t are given below, where a is a constant.

$$\mathbf{r}_A = 5\mathbf{i} + \mathbf{j} - 4\mathbf{k} + t(\mathbf{i} - \mathbf{j} + 3\mathbf{k})$$
 and $\mathbf{r}_B = a\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} + t(2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k})$

11

The paths of the particles cross at P but the particles do not meet.

(a) Determine the value of the constant *a* and the position vector of *P*. (5 marks)



(b) Show that the point (0, -8, 1) lies in the plane containing the two lines. (3 marks)

Solution
$(2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}) \times (\mathbf{i} - \mathbf{j} + 3\mathbf{k}) = (11\mathbf{i} - 10\mathbf{j} - 7\mathbf{k})$
$(11i - 10j - 7k) \cdot (5i + j - 4k) = 73$
Equation of plane is $\mathbf{r} \cdot (11\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}) = 73$
$(11\mathbf{i} - 10\mathbf{j} - 7\mathbf{k}) \cdot (-8\mathbf{j} + \mathbf{k}) = 0 + 80 - 7 = 73$
Hence point lies in plane.
Specific behaviours
✓ calculates normal to plane
\checkmark calculates constant and writes equation of plane
✓ substitutes point, showing equation satisfied

CALCULATOR-ASSUMED

Question 16

Let
$$f(x) = \sqrt{x-2}$$
, $g(x) = \frac{6}{x}$ and $h(x) = f \circ g(x)$.

(a) Determine an expression for h(x) and show that the domain of h(x) is $0 < x \le 3$. (3 marks)

12

Solution

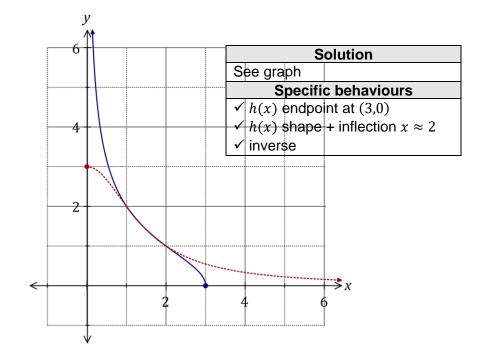
$$h(x) = \sqrt{\frac{6}{x} - 2}$$

$$D_h: \text{(i) require } x > 0 \text{ so that } \frac{6}{x} - 2 > 0 \text{ and (ii) } \frac{6}{x} \ge 2 \Rightarrow x \le 3$$
Hence $D_h: \{x \in \mathbb{R}: 0 < x \le 3\}$
Specific behaviours
 $\checkmark h(x)$
 $\checkmark \text{ explains why } x > 0$
 $\checkmark \text{ explains why } x \le 3$

(b) Determine an expression for
$$h^{-1}(x)$$
, the inverse of $h(x)$.

Solution
$$h^{-1}(x) = \frac{6}{x^2 + 2}$$
 (CAS)Specific behaviours \checkmark correct expression

(c) Sketch the graphs of y = h(x) and $y = h^{-1}(x)$ on the axes below.



(d) Solve
$$h(x) = h^{-1}(x)$$
, correct to 0.01 where necessary.

Solution
$$x = 1$$
, $x = 2$, $x \approx 1.46$ (CAS)Specific behaviours \checkmark correct solutions

(1 mark)

(8 marks)

(1 mark)

(3 marks)

See next page

SN078-134-4

SPECIALIST UNIT 3

Question 17

(8 marks)

Sphere S has diameter PQ, where P and Q have coordinates (6, -2, -3) and (-2, 4, 1)respectively.

Determine the vector equation of the sphere. (a)

(3 marks)

Solution

$$\overrightarrow{OC} = \frac{1}{2}(P+Q) = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

$$r = \left| \begin{pmatrix} 6 \\ -2 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right| = \sqrt{29}$$

$$\left| \mathbf{r} - \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right| = \sqrt{29}$$
Specific behaviours
 \checkmark indicates position of centre
 \checkmark indicates radius
 \checkmark correct vector equation
at the point (5, 5, 2) lies outside the spl

(b) Show that de the sphere.

Solution
$$\begin{vmatrix} 5\\5\\2 \end{pmatrix} - \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \end{vmatrix} = \sqrt{34}$$

 $=\sqrt{29}$

of centre

Since $\sqrt{34} > \sqrt{29}$, point lies outside sphere.

Specific behaviours ✓ calculates distance ✓ explains result

Show that the line with equation $\mathbf{r} =$ is tangential to the sphere. (c) 1 $+\lambda$ 0

(3 marks)

(2 marks)

$$\begin{vmatrix} 5+5\lambda \\ 1\\ 6+2\lambda \end{vmatrix} - \begin{pmatrix} 2\\ 1\\ -1 \end{vmatrix} \end{vmatrix} = \sqrt{29}$$

Solution

$$(3+5\lambda)^2 + (0)^2 + (7+2\lambda)^2 = 29 \Rightarrow \lambda = -1$$

As λ has a unique value, the line only intersects sphere at one point and so it must be a tangent.

Specific behaviours

- ✓ substitutes line equation into sphere equation
- \checkmark solves for λ
- ✓ explains result

13

2 1

= $\sqrt{29}$

Question 18

(9 marks)

A pole and a wall stand vertically on horizontal ground. A small projectile is launched from the pole at a height of 3.16 m above the ground and sometime later hits the wall at a height of 1.79 m above the ground. The projectile has an initial velocity of 32 ms⁻¹ at an angle of 36° above the horizontal.

14

Any effects of air resistance and wind can be ignored. Let \mathbf{i} and \mathbf{j} be unit vectors in the horizontal and vertical (upward) directions and the foot of the pole be at (0, 0).

The acceleration acting on the projectile is given by a(t) = -9.8j ms⁻².

(a) Use the information above to derive vector equations for the velocity $\mathbf{v}(t)$ and displacement $\mathbf{r}(t)$ of the projectile at any time *t*.

(3 marks)

Solution
$\mathbf{v}(t) = (32\cos 36^\circ)\mathbf{i} + (32\sin 36^\circ - 9.8t)\mathbf{j}$
$\mathbf{r}(t) = (32t\cos 36^\circ)\mathbf{i} + (3.16 + 32t\sin 36^\circ - 4.9t^2)\mathbf{j}$
Specific behaviours
✓ integrates correctly twice
\checkmark correct expression for $\mathbf{v}(t)$
\checkmark correct expression for $\mathbf{r}(t)$

(b) Determine

(i) the time that the projectile takes to travel between the pole and the wall.

(2 marks)

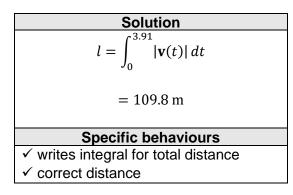
Solution $3.16 + 32t \sin 36^\circ - 4.9t^2 = 1.79$ t = 3.91 sSpecific behaviours \checkmark equates j coefficient of displacement to height \checkmark solves for time

SPECIALIST UNIT 3

(ii) the speed of the projectile at the instant it hits the wall.

(iii) the length of the path taken by the projectile between the pole and the wall.

(2 marks)



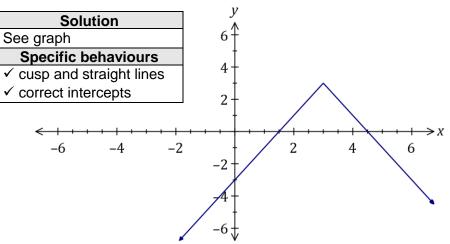
SN078-134-4

(2 marks)

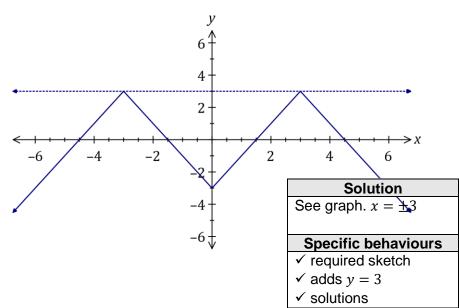
Question 19

Let f(x) = 3 - |2x - 6|.

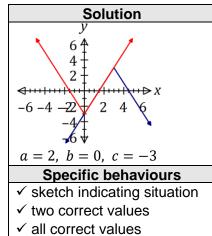
Sketch the graph of y = f(x) on the axes below. (a)



Sketch the graph of y = f(|x|) and hence solve f(|x|) - 3 = 0. (b)



(c) The equation f(x) = a|x + b| + c is true only for $0 \le x \le 3$. Determine the value of each of the constants a, b and c. (3 marks)



(3 marks)

(8 marks)

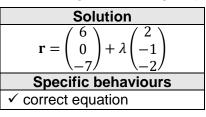
(2 marks)

Question 20

(7 marks)

- (a) Point *A* has coordinates (6, 0, -7) and plane Π has equation 2x y 2z = 8. Determine
 - (i) a vector equation for the straight line through A perpendicular to Π .

(1 mark)



(ii) the perpendicular distance of A from
$$\Pi$$
.

Solution

$$2(6+2\lambda) - (-\lambda) - 2(-7 - 2\lambda) = 8 \Rightarrow \lambda = -2$$

$$\mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}, \quad \mathbf{r}_1 = \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ -7 \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \\ 4 \end{pmatrix}$$

$$|\mathbf{r}_1| = 6$$
Specific behaviours

$$\checkmark \text{ substitutes equation of line into equation of plane}$$

$$\checkmark \text{ determines vector from point to plane}$$

✓ calculates distance

(b) Prove that the perpendicular distance from the origin to the plane $\mathbf{r} \cdot \hat{\mathbf{n}} = k$ (where $\hat{\mathbf{n}}$ is a unit vector perpendicular to the plane) is *k*. (3 marks)

SolutionEquation of line perpendicular to plane through origin is $\mathbf{r} = \lambda \mathbf{\hat{n}}$.Line will intersect plane when $\lambda \mathbf{\hat{n}} \cdot \mathbf{\hat{n}} = k$.Hence $\lambda = k$ since $\mathbf{\hat{n}} \cdot \mathbf{\hat{n}} = |\mathbf{\hat{n}}| |\mathbf{\hat{n}}| = 1$.Thus, closest point to origin is $\mathbf{r} = k \mathbf{\hat{n}}$ and distance $d = |\mathbf{r}| = k |\mathbf{\hat{n}}| = k$ Specific behaviours✓ substitutes equation of line into equation of plane✓ simplifies $\mathbf{\hat{n}} \cdot \mathbf{\hat{n}}$ and uses to obtain closest point to origin

✓ simplifies expression for distance

Alternative solution

An alternative proof could involve using $|\mathbf{r}||\hat{\mathbf{n}}|\cos\theta$ and explaining why $\theta = 0$. (3 marks)

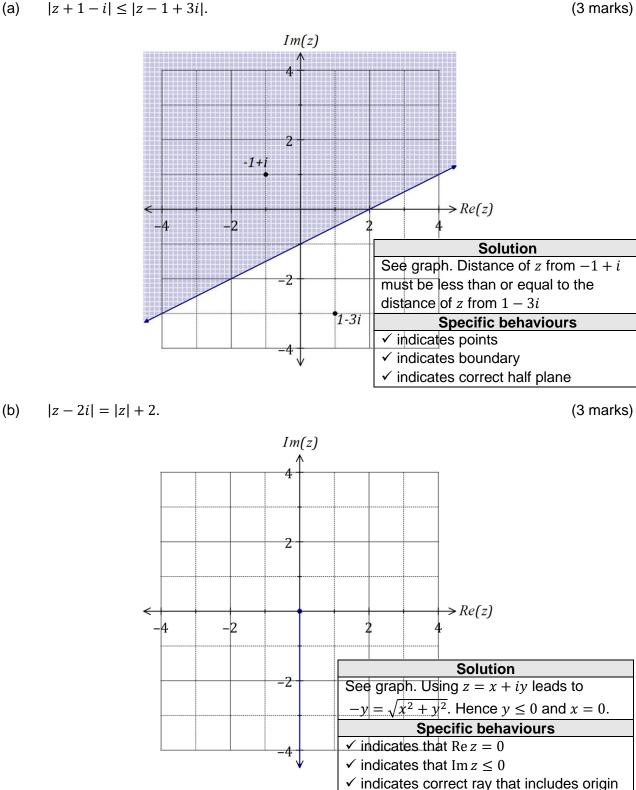
CALCULATOR-ASSUMED

Question 21

Sketch the locus of the complex number z given by

(a)
$$|z+1-i| \le |z-1+3i|$$
.

(6 marks)



18

Question number: _____

© 2019 WA Exam Papers. Perth Modern School has a non-exclusive licence to copy and communicate this document for non-commercial, educational use within the school. No other copying, communication or use is permitted without the express written permission of WA Exam Papers. SN078-134-4.